267 research outputs found

    Functional outcome after lower limb amputation: is hyperhomocysteinemia a predictive factor? an observational study

    Get PDF
    Lower limb amputation (LLA) is the drastic stage of peripheral arterial disease (PAD) where the hyperhomocysteinemia (H-HCY) seems to be a risk factor. Surprisingly, in literature the levels and the role of homocysteinemia (HCY) in persons with LLA are understudied. This study aims to investigate the level of HCY and its correlation with the functional outcomes after LLA.A case-control study to analyze HCY levels in amputees admitted in a rehabilitation hospital during an investigation period of 1.5 years. Barthel Index was used to assess the functional outcome.We enrolled 91 dysvascular amputees and 44 amputees for other reasons than PAD (controls). The mean level of HCY was found higher in dysvascular amputees (15.27.5) compared to controls (11.0 +/- 5.0, P<0.0001) with a risk related ratio of 4.78. Normal Gaussian distribution of HCY was observed in controls, whereas in dysvascular amputees the data follow a double Gaussian distribution. Finally, a significant negative correlation was found between HCY and the effectiveness of rehabilitation (R=-0.37, P=0.001) only in dysvascular amputees.Dysvascular amputees had a level of HCY significantly higher than amputees without PAD. H-HCY seems to influence the functional outcomes of the rehabilitative treatment only in LLA due to PAD

    Wearable inertial sensors for human movement analysis

    Get PDF
    Introduction: The present review aims to provide an overview of the most common uses of wearable inertial sensors in the field of clinical human movement analysis.Areas covered: Six main areas of application are analysed: gait analysis, stabilometry, instrumented clinical tests, upper body mobility assessment, daily-life activity monitoring and tremor assessment. Each area is analyzed both from a methodological and applicative point of view. The focus on the methodological approaches is meant to provide an idea of the computational complexity behind a variable/parameter/index of interest so that the reader is aware of the reliability of the approach. The focus on the application is meant to provide a practical guide for advising clinicians on how inertial sensors can help them in their clinical practice.Expert commentary: Less expensive and more easy to use than other systems used in human movement analysis, wearable sensors have evolved to the point that they can be considered ready for being part of routine clinical routine

    Editorial: Neuro-motor control and feed-forward models of locomotion in humans

    Get PDF
    “He told me with amusement that when one is walking rapidly each step takes no more than half a second, and in that half second no fewer than 54 muscles are set in motion. I listened in awe. I at once directed my attention to my legs and tried to discover the infernal machine. I thought I had succeeded in finding it. I could not of course distinguish all its 54 parts, but I discovered something terrifically complicated which seemed to get out of order the instant I began thinking about it.” Well-depicted by Svevo in “Confessions of Zeno” (Svevo, 1923, 1989), the act of walking involves many different muscles and the necessity of controlling several degrees of freedom at once. This Research Topic has mainly been focused on the strategies adopted by the central nervous system for reducing the complexity of motor control and compensating for the sensorimotor delays. The studies published within this Research Topic addressed this issue at two levels of investigation, focusing on one side the neural circuitry, such as the so called central pattern generators in the spinal cord and the supraspinal structures, and on the other one on the cognitive processes involved during locomotion

    Auditory cue based on the golden ratio can improve gait patterns in people with parkinson’s disease

    Get PDF
    The harmonic structure of walking relies on an irrational number called the golden ratio (φ): in healthy subjects, it coincides with the stride-to-stance ratio, and it is associated with a smooth gait modality. This smoothness is lost in people with Parkinson’s disease (PD), due to deficiencies in the execution of movements. However, external auditory cues seem to facilitate movement, by enabling the timing of muscle activation, and helping in initiating and modulating motor output. Based on a harmonic fractal structure of gait, can the administration of an auditory cue based on individual’s φ-rhythm improve, in acute, gait patterns in people with PD? A total of 20 participants (16 males, age 70.9 ± 8.4 years, Hoehn and Yahr stage-II) were assessed through stereophotogrammetry: gait spatio-temporal parameters, and stride-to-stance ratio were computed before, during, and after the φ-rhythm administration. Results show improvements in terms of stride length (p = 0.018), walking speed (p = 0.014), and toe clearance (p = 0.013) when comparing gait patterns before and after the stimulus. Furthermore, the stride-to-stance ratio seems to correlate with almost all spatio-temporal parameters, but it shows the main changes in the before–during rhythm comparison. In conclusion, φ-rhythm seems an effective cue able to compensate for defective internal rhythm of the basal ganglia in PD

    Vestibular rehabilitation training in patients with subacute stroke: a preliminary randomized controlled trial

    Get PDF
    Background: Vestibular rehabilitation (VR) consists in a customized exercise program patient-centred that includes a combination of different exercise components with the aim to promote gaze stability, improve balance and gait, and facilitate somatosensory integration. OBJECTIVE: The aim of this study was to investigate the effect of customized vestibular rehabilitation training on gait stability of patients with subacute stroke. METHODS: Twenty-five inpatients (12 M, age: 64.1±12.1 years) with diagnosis of subacute stroke were enrolled and randomized in two groups. All patients were evaluated before and after 4 weeks of training sessions. An instrumented 10-Meter Walk Test together with traditional clinical scales were used to assess VR effects. To investigate if any fall event occurred after patients' dismissal, they were followed-up at three and twelve months after dismissal. RESULTS: Higher values of walking speed and stride length were observed in the VR group. Conversely, no significant difference was found in terms of trunk stability. The results of between-group comparison highlight significant differences between the two groups for different clinical scale scores. CONCLUSION: VR could be included into a rehabilitation program for patients with stroke for improving their gait and dynamic balance acting on their vestibular system as facilitator of recovery

    Usefulness of magnetoinertial wearable devices in neurorehabilitation of children with cerebral palsy

    Get PDF
    Background. Despite the increasing use of wearable magnetoinertial measurement units (MIMUs) for gait analysis, the efficacy of MIMU-based assessment for planning rehabilitation has not been adequately documented yet. Methods. The usefulness of a MIMU-based assessment was evaluated comparing the data acquired by three MIMUs located at the pelvis, sternum, and head levels in 12 children with cerebral palsy (CP, age: 2-9 years) and 12 age-matched children with typical development (TD). Gait stability was quantified in terms of acceleration attenuation coefficients from pelvis to head, pelvis to sternum, and sternum to head. Children with CP were randomly divided in two groups: in the first group (CPI), MIMU-based parameters were used by therapists for planning patient-tailored rehabilitation programs, whereas in the second group (CPB), therapists were blind to the MIMU-based assessment results. Both CPI and CPB were tested before and after the relevant neurorehabilitation program. Ad hoc questionnaires were also administered to therapists of the CPI group to assess the degree of usefulness perceived about the information provided by the MIMU-based assessment. Results. Significant differences were found between children with CP and those with TD for the acceleration attenuation coefficient from pelvis to head (p = 0 048) and from pelvis to sternum (p = 0 021). After neurorehabilitation, this last parameter increased more in CPI (35%) than in CPB (6%, p = 0 017 for the interaction group per time). The results of the questionnaires showed that therapists agreed with the usability (100% judged it as "easy to use") and usefulness of the MIMU-based assessment in defining patient-oriented interventions (87%). Conclusions. There is a large debate in literature about the efficacy of classical gait analysis that should be enlarged to new technological approaches, such as that based on MIMUs. This study is a first proof of concept about the efficacy of this approach for neurorehabilitation of children with CP

    The effect of vestibular stimulation on motor functions of children with cerebral palsy

    Get PDF
    Background: Cerebral palsy (CP) has been defined as a nonprogressive disease of movement and posture development. Physical therapy techniques use different forms of sensory stimulation to improve neuromotor development. Aim: The aim of this study was to assess the efficacy of a vestibular stimulation training in improving motor functions in cerebral palsy. Population: Fourteen children with CP were randomly separated into two different groups in a cross-over trial. Methods: Over a period of 10 weeks, each group performed 10 sessions of 50 min of neurodevelopmental treatment (NDT) and 10 sessions of vestibular training (VR). Children were evaluated with the Gross Motor Function Measurement-88 scale, the Goal Attainment Scale and the root mean square of head accelerations. Results: A significant improvement in the GAS-score (p =.003) was noted after NDT+VR. Conclusions: Vestibular stimulation integrated with NDT proved to be an effective complementary strategy for facilitating motor functioning

    Assessment of waveform similarity in clinical gait data. The linear fit method

    Get PDF
    The assessment of waveform similarity is a crucial issue in gait analysis for the comparison of kinematic or kinetic patterns with reference data. A typical scenario is in fact the comparison of a patient’s gait pattern with a relevant physiological pattern. This study aims to propose and validate a simple method for the assessment of waveform similarity in terms of shape, amplitude, and offset. The method relies on the interpretation of these three parameters, obtained through a linear fit applied to the two data sets under comparison plotted one against the other after time normalization. The validity of this linear fit method was tested in terms of appropriateness (comparing real gait data of 34 patients with cerebrovascular accident with those of 15 healthy subjects), reliability, sensitivity, and specificity (applying a cluster analysis on the real data). Results showed for thismethod good appropriateness, 94.1% of sensitivity, 93.3% of specificity, and good reliability. The LFM resulted in a simple method suitable for analysing the waveform similarity in clinical gait analysis

    Multilevel upper body movement control during gait in children with cerebral palsy

    Get PDF
    Upper body movements during walking provide information about balance control and gait stability. Typically developing (TD) children normally present a progressive decrease of accelerations from the pelvis to the head, whereas children with cerebral palsy (CP) exhibit a general increase of upper body accelerations. However, the literature describing how they are transmitted from the pelvis to the head is lacking. This study proposes a multilevel motion sensor approach to characterize upper body accelerations and how they propagate from pelvis to head in children with CP, comparing with their TD peers. Two age-and gender-matched groups of 20 children performed a 10m walking test at self-selected speed while wearing three magneto-inertial sensors located at pelvis, sternum, and head levels. The root mean square value of the accelerations at each level was computed in a local anatomical frame and its variation from lower to upper levels was described using attenuation coefficients. Between-group differences were assessed performing an ANCOVA, while the mutual dependence between acceleration components and the relationship between biomechanical parameters and typical clinical scores were investigated using Regression Analysis and Spearman's Correlation, respectively (alpha = 0.05). New insights were obtained on how the CP group managed the transmission of accelerations through the upper body. Despite a significant reduction of the acceleration from pelvis to sternum, children with CP do not compensate for large accelerations, which are greater than in TD children. Furthermore, those with CP showed negative sternum-to-head attenuations, in agreement with the documented rigidity of the head-trunk system observed in this population. In addition, the estimated parameters proved to correlate with the scores used in daily clinical practice. The proposed multilevel approach was fruitful in highlighting CP-TD gait differences, supported the in-field quantitative gait assessment in children with CP and might prove beneficial to designing innovative intervention protocols based on pelvis stabilization
    • …
    corecore